ЗОЛОТЫЕ СЕЧЕНИЯ, КАК АТТРАКТОРЫ В РЕКУРРЕНТНЫХ ФУНКЦИЯХ НА ОСНОВЕ БЕСКОНЕЧНЫХ ЦЕПНЫХ ДРОБЕЙ И ВЛОЖЕННЫХ РАДИКАЛОВ

С помощью аналитических оценок и компьютерного моделирования найдены различные типы рекуррентных функций на основе бесконечных цепных дробей и бесконечных вложенных радикалов, обладающие следующим важным свойством: их действительные или мнимые части в некоторых областях аргументов с высокой точностью равны константам золотого сечения $\phi = (-1 + \sqrt{5})/2 \approx 0,618\ 034$ или $\Phi = (1 + \sqrt{5})/2 = \phi + 1 = 1/\phi \approx 1,618\ 034$. Выявлены разные сценарии перехода к таким интересным аттракторам, как константы ϕ , Φ . Показано, что найденные аттракторы могут представлять собой плато по значениям функции, гладкие экстремумы и иметь тонкую структуру.

К найденным функциям, имеющим в качестве аттракторов соответственно константы ϕ , Φ , относятся, напр., следующие функции $f(x, \alpha, \beta)$ и $F(x, \alpha, \beta)$:

$$f(x,\alpha,\beta) = \frac{x^{\alpha}}{1 + \frac{x^{\beta}}{1 + \frac{x^{\beta+1}}{1 + \frac{x^{\beta+2}}{1 + \dots}}}}, \qquad F(x,\alpha,\beta) = \frac{x^{\alpha}}{1 - \frac{x^{\beta}}{1 + \frac{x^{\beta+1}}{1 - \frac{x^{\beta+2}}{1 + \dots}}}}$$
(1)

Так, выяснилось, что при $\beta = 1$ значение $\alpha = 5^{-1} = (\phi + \Phi)^{-2}$, как для $f(x, \alpha, \beta)$, так и для $F(x, \alpha, \beta)$. При $\beta = 2$ $\alpha \approx 1/\sqrt{2(\phi + \Phi)} \approx 0,472\ 871$ для $f(x, \alpha, \beta)$ и $\alpha \approx (\phi + \Phi)/80 \approx 0,027\ 951$ для $F(x, \alpha, \beta)$. Отметим также что, при $\beta = 3$ $\alpha = (\phi^2 + \Phi^2)/(\Phi^3 - \phi^3) = 3/4$ для $f(x, \alpha, \beta)$.

Проведём далее детальное рассмотрение указанных функций для случая $\alpha = 5^{-1}$, $\beta = 1$, введя функции $f(x) = x^{1/5} / g(x)$ и $F(x) = x^{1/5} / G(x)$ где:

$$g(x) = 1 + \frac{x^{1}}{1 + \frac{x^{2}}{1 + \frac{x^{3}}{1 + \dots}}}, \qquad G(x) = 1 - \frac{x^{1}}{1 + \frac{x^{2}}{1 - \frac{x^{3}}{1 + \dots}}}$$
(2)

Графики фукций g(x), G(x), а также действительных и мнимых частей функции x^{1/5} показаны на рис. 1. Функции g(x), G(x) имеют ряд важных особенностей. Они симметричны относительно оси OY, при этом g(1) = G(-1) = Φ , G(1) = g(-1) = ϕ ! G(x)_{max} = g(x)_{max} $\approx 1/\sin\phi \approx 1,725$ при x $\approx \pm 1/\sqrt{\phi + \Phi} \approx 0,669$. Далее, G(x)_{min} = g(x)_{min} $\approx \sin\phi \approx 0,579$ при x $\approx \pm \sqrt{\phi + \Phi} \approx 1,495$. Наконец, $\lim_{x \to \pm \infty} g(x) = 1 \pm 0$, $\lim_{x \to \pm \infty} G(x) = 1 \mp 0$.

Отметим, что при компьютерных расчётах бесконечные дроби аппроксимировались конечными дробями с числом циклов N = 40, что обеспечивало высокую точность вычислений - более 9 знаков после запятой.

На рис. 2-4 показаны действительные и мнимые части функций f(x), F(x) при различных масштабах вдоль координатных осей, что позволяет увидеть общий вид и тонкую структуру этих функций.

При x >0 функции f(x) и F(x) действительны, причём f(x) $\simeq \phi$ в области 0,7 < x < 1,06 с точностью <10⁻⁹. Функция же F(x) $\simeq \Phi$ с той же точностью в двух областях: 1) 0,91 < x <1,002 и 2) 1,7857 < x <1,7858, расположенной вблизи точки x = 4/ $\sqrt{5} \simeq$ 1,788. При этом лишь функция F(x) имеет тонкую структуру в виде минимума на «плато» – области постоянных значений F(x) (см. рис. 2, 4) при x $\simeq \sqrt{3/(\phi + \Phi)} \simeq$ 1,162.

Отметим, что все эти значения х выражаются через константы золотого сечения, поскольку любое целое число точно выражается через ϕ , Φ : 2 = $\phi^2 + \Phi^1$, 3 = $\phi^2 + \Phi^2$, 4 = $\Phi^3 - \phi^3$, 5 = $(\phi + \Phi)^2$, 7 = $\phi^4 + \Phi^4$ и т.д.

При x < 0 функции f(x), F(x) комплексны, причём тонкую структуру в виде минимумов на плато имеют лишь действительная и мнимая части f(x) (см. рис. 2, 3 a, б) при x $\approx -\sqrt{3/(\phi + \Phi)} = -\sqrt{(\phi^2 + \Phi^2)/(\phi + \Phi)} \approx -1,162$.

В области плато найдены следующие примечательные соотношениия, также выражающиеся через константы золотого сечения **ф**, **Ф**:

Ref(x)
$$\approx \sqrt{5+3\phi} / 2 = 1,309$$
, Imf(x) $\approx \sqrt{3+\phi} / 2 = \sin 72^{\circ} \approx 0,951$ (3),

$$\sqrt{\operatorname{Re}^{2} f(x) + \operatorname{Im}^{2} f(x)} = \Phi$$
(4),

Re
$$F(x) \simeq (\phi^2 + \Phi^1)^{-1/2} = 0.5$$
, Im $F(x) \simeq \sqrt{2 - 4\phi} / 2 \simeq 0.363$ (5),

$$\sqrt{\operatorname{Re}^{2} F(x) + \operatorname{Im}^{2} F(x)} = \phi$$
(6),

Отметим также, что в соответствии с тем, что, как следует из рис. 1:

$$\lim_{x \to \pm \infty} g(x) = 1 \pm 0, \qquad \qquad \lim_{x \to \pm \infty} G(x) = 1 \mp 0 \tag{7}$$

получаем, что с ростом |x| предельные значения действительных и мнимых частей f(x) и F(x) становятся равными:

$$\lim_{x \to \pm \infty} \operatorname{Ref}(x) = \lim_{x \to \pm \infty} \operatorname{Re}F(x), \quad \lim_{x \to \pm \infty} \operatorname{Imf}(x) = \lim_{x \to \pm \infty} \operatorname{Im}F(x) \quad (8)$$

Рассмотрим далее свойства функции r(x), состоящей из бесконечной последовательности вложенных радикалов:

$$\mathbf{r}(\mathbf{x}) = \sqrt{\mathbf{x} + \sqrt{\mathbf{x} + \sqrt{\mathbf{x} + \cdots}}} \tag{9}$$

Графики действительных и мнимых частей r(x) показаны на рис. 5.

Функция r(x) довольно быстро сходится и уже при её аппроксимации 20-ю вложенными радикалами приближённое значение равно её точному значению с точностью более 9 знаков после запятой, которое, как нетрудно показать, при x = 1 равно константе золотого сечения: $r(1) = \phi$.

Важно также то, что $\operatorname{Rer}(x) = 1/2 = (\phi \Phi + \Phi \phi)^{-1}$ в бесконечной области при всех $x \leq -1/2$! Наконец, следует отметить очень быстрое, скачкообразное изменение $\operatorname{Rer}(x)$ от $\operatorname{Rer}(x=0) = 0$ до $\operatorname{Rer}(x) \simeq 1$ уже при $10^{-17} \leq |x|$.

Вновь используя корректирующую функцию вида x^{α} , получим. что при

 $\alpha = \phi / \sqrt{5} = \phi / (\phi + \Phi) \simeq 0,276$ 393 следующие функции y(x) и Y(x):

$$y(x) = x^{\phi/\sqrt{5}} / r(x),$$
 $Y(x) = r(x) / x^{\phi/\sqrt{5}}$ (10)

имеют пологие, симметричные относительно точки х = 1 экстремумы:

$$y(x)_{max} = y(1) = \phi, \qquad Y(x)_{min} = Y(1) = \Phi$$
 (11)

Графики действительной и мнимой частей функции у(x) в различных масштабах показаны на рис. 6, 7.

Рассмотрим далее некоторые свойства неисследовавшихся ранее функций, основанных на бесконечных цепных дробях в сочетании с бесконечными последовательностями вложенных радикалов !! В качестве примера таких функций, имеющих пологие симметричные экстремумы, равные ϕ , укажем определённые ниже функции p(x) и q(x):

$$p(x) = \frac{x^{1/5}}{\sqrt{2 + \frac{x^2}{\sqrt{2 + \frac{x^4}{\sqrt{2 + \dots^2}}}}}}, \quad q(x) = \frac{x^{1/\sqrt{5}}}{\sqrt{1 + \frac{x}{\sqrt{1 + \frac{x}{\sqrt{1 + \dots^2}}}}}$$
(12)

6

Графики действительных и мнимых частей функций p(x) и q(x) в различных масштабах показаны на рис. 8, 9.

Укажем также, что пологие симметричные экстремумы, равные ϕ или Φ , были обнаружены не только в функциях, содержащих вложенные радикалы, но и в функциях лишь на основе цепных дробей. Для удобства сравнения введём дополнительный индекс 1 для определённой в (1) функции f(x): f1(x) = f(x), указывающий на то, что в f1(x) цепная дробь начинается с $x^{\beta} = x^{1}$. Кроме того, введём две новых функции f2(x) и f3(x), в которых цепные дроби начинаются, соответственно, с x^{2} и x^{3} :

$$f2(x) = \frac{x^{1/\sqrt{2(\phi+\Phi)}}}{1+\frac{x^2}{1+\frac{x^3}{1+\cdots}}}, \qquad f3(x) = \frac{x^{3/4}}{1+\frac{x^3}{1+\frac{x^4}{1+\cdots}}}$$
(13)

7

На рис 10 показаны графики реальных частей функций f1(x), f2(x), f3(x), равных при x > 0 самим функциям f1(x), f2(x), f3(x). Видно, что с ростом показателя степени β начального элемента цепной дроби происходит постепенное преобразование несимметричного относительно x = 1 плато функции f1(x) в симметричные относительно x = 1 плавные максимумы функций f2(x), f3(x), равные ф при x = 1. При этом у функций f2(x), f3(x) появляется тонкая структура - минимумы при x = $\sqrt{\Phi} \approx 1,272$. Кроме того, графики функций f1(x), f2(x), f3(x) пересекаются при x $\approx \sqrt{2} \approx 1/\sin(\sqrt{\phi})$.

Отметим также что, как было нами установлено, вблизи точки x = 1 цепные дроби можно аппроксимировать конечными наборами степенных функций с точностью, естественно, зависящей от числа слагаемых Так, введёная в (2) функция g(x) с $g(1) = \Phi$ хорошо аппроксимируется при $x \simeq 1$, напр., такой найденной функцией h(x):

$$h(x) = 1 + (x + \delta)^{0} + (x + \delta)^{1} - (x + \delta)^{3} + (x + \delta)^{5} + (x + \delta)^{6} - (x + \delta)^{7} - 2(x + \delta)^{8} + 2(x + \delta)^{10} + 2(x + \delta)^{11}$$
(14),

$$\delta \simeq -1,480524246 \simeq -7/\sqrt{2 \cdot 5^3} \simeq -(\phi^4 + \Phi^4)/(\phi \Phi + \Phi \phi)^{1/2}(\phi + \Phi)^{3/2}$$
(15)

Причём, при найденном значении δ h(1) $\simeq \Phi$ с точностью < 10⁻⁹.

Таким образом, полученные результаты существенно дополняют общие сведения о цепных дробях и вложенных радикалах (см., напр. [1-5]) и являются, несомненно, интересными как с чисто математической точки зрения, так и с точки зрения возможных практических приложений таких функций.

Дл последнего времени цепные дроби (Continued fractions) и вложенные радикалы (Nested radicals) представляли, в основном, академический интерес. Но недавно были предложены важные приложения таких функций. Так, напр., в работе [6] рассмотрен новый метод расчёта аномалий в геофизических полях внутри планет с помощью цепных дробей. Существенным преимуществом этого метода является отсутствие в аппроксимирующих функциях на основе цепных дробей эффекта Гиббса – сильных колебаний частичных сумм рядов Фурье на границах отрезка, имеющих место при аппроксимациях с помощью тригонометрических функций. В этой связи подчеркнём, что быстрые (без переходных процессов) изменения значений функций были обнаружены и для функций на основе вложенных радикалов (см. рис. 5) данной статьи.

Список литературы

- 1. *Хинчин А. Я.* Цепные дроби: 4-е изд. М.: Эдиториал УРСС, 2004. 112 С.
- 2. Джоунс У., Трон В. Непрерывные дроби. М., Мир, 1985. 414 С.
- Арнольд В. И. Цепные дроби. М., Центр непрерывного математического образования, 2001. – 40 С.
- Notebooks of Strinivasa Ramanujan. Tata Institute of Fundamental Research. Bombay, 1957, Vol. 1, 2.
- Ramanujan S. Collected Papers. Chalsea, New York, 1962 Nested Radicals. <u>http://mathworld/wolfram.com/</u>
- Ерохин К.М. Аналитическое продолжение геофизических полей в область источников аномалий методом аппроксимации цепными дробями. Геофизика (ЕАГО), 2007, № 1, 51-58.